Feuille de TD 7 - Autres espaces vectoriels

Espace des polynômes

Exercice 1. Soit $\mathbb{R}[T]$ l'ensemble des polynômes à coéfficients réels.

- (a) Montrer que $\mathbb{R}[T]$ admet une structure d'éspace vectoriel réel.
- (b) Est-ce que $\mathbb{R}[T]$ est un éspace vectoriel de type fini? Justifier la réponse.
- (c) Soit $\mathbb{R}_n[T] := \{P \in \mathbb{R}[T] \mid \deg P \leq n\}$ le sous-ensemble des polynômes de degré $\leq n$. Montrer que $\mathbb{R}_n[T]$ est un sous-espace vectoriel de $\mathbb{R}[T]$ de type fini. Montrer que $\mathcal{E}_n = \{1, T, \dots, T^n\}$ forme une base de $\mathbb{R}_n[T]$ et en déduire la dimension.

Exercice 2. Dans l'espace vectoriel $\mathbb{R}_3[X]$, on considère la suite (P_0, P_1, P_2, P_3) , où

$$P_0 = (1 - X)^3$$
, $P_1 = X(1 - X)^2$, $P_2 = X^2(1 - X)$, $P_3 = X^3$

Calculer les coordonnées de P_j dans la base canonique $\mathcal{E} = \{1, X, X^2, X^3\}$ de $\mathbb{R}_3[X]$; en déduire que la suite (P_0, P_1, P_2, P_3) est une base de $\mathbb{R}_3[X]$.

Exercice 3. Déterminer des bases des sous-espaces vectoriels suivants de $\mathbb{R}_2[X]$:

- (a) $E = \{ P \in \mathbb{R}_2[X] \mid P(0) + P'(0) = 0 \text{ et } P(1) P'(1) = 0 \},$
- (b) $F = \{ P \in \mathbb{R}_2[X] \mid X^2 P'' + P' 2P = 0 \}.$

Exercice 4. Soit

$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 3 & 4 \end{pmatrix}.$$

- (a) On considère l'application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^3$ représentée, dans les bases canoniques, par la matrice A. Calculer l'image par f du vecteur (2, -1).
- (b) On considère l'application linéaire $f: \mathbb{R}_1[X] \to \mathbb{R}_2[X]$ représentée, dans les bases canoniques, par la matrice A. Calculer l'image par f du polynôme P(X) = 3X + 4.

Exercice 5. On considère l'application $u: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ telle que : u(P) = P'.

- (a) Montrer que u est une application linéaire.
- (b) Déterminer les sous-espaces vectoriels $\operatorname{Ker} u$ et $\operatorname{Im} u$.
- (c) Plus généralement déterminer les sous-espaces $\operatorname{Ker} u^k$, pour $k \in \mathbb{N}^*$.
- (d) Même questions pour l'application $v: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ telle que v(P) est le polynôme P(X+1) P(X).

Exercice 6. Soit $V = \{P \in \mathbb{R}_3[T] \mid P(0) = 0, P(1) = 0, P'(1) = 0\}.$

- (a) Montrer que V est un sous-espace vectoriel de $\mathbb{R}_3[T]$.
- (b) Donner une base de V, et en déduire sa dimension.

Soit $f: \mathbb{R}_3[T] \to \mathbb{R}_2[T]$ donnée par $P(T) \mapsto P'(T) - (T+1)P''(T)$.

- (c) Montrer que f définit une application linéaire de $\mathbb{R}_3[T] \to \mathbb{R}_2[T]$.
- (d) Écrire la matrice associée à f par rapport à deux bases quelconques de $\mathbb{R}_3[T]$ et $\mathbb{R}_2[T]$.
- (e) Trouver une base de Ker f.
- (f) Décrire l'espace $\operatorname{Ker} f \cap V$.

Exercice 7.

(a) Montrer que la famille $\mathcal{B} = (T-1, T+1, T^2-1)$ forme un base de $\mathbb{R}_2[T]$.

Soit $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 2 & 0 \end{pmatrix}$, et $f : \mathbb{R}_2[T] \to \mathbb{R}_2[T]$ l'application linéaire représentée par la matrice A par rapport à la base \mathcal{B}

- (b) Est-ce que f est inversible?
- (c) Soient $P_0(T) = 1$, $P_1(T) = T$, $P_2(T) = T^2$. Calculer $f(P_0)$, $f(P_1)$, $f(P_2)$.
- (d) En déduire la matrice associée à f par rapport à la base $\mathcal{E} = (P_0, P_1, P_2)$.
- (e) Soit $g: \mathbb{R}_2[T] \to \mathbb{R}_2[T]$ donnée par $P \mapsto P(0) + P'(0)T + P(1)(T+1)(T-2)$. Montrer que g est une application linéaire, et puis que f = q.

Exercice 8. Soit $\Delta: E \to E$ l'application définie par

$$\Delta(P)(X) = P(X+1) + P(X-1) - 2P(X).$$

- (a) Montrer que Δ est une application linéaire de E dans E.
- (b) Calculer $\Delta(X^k)$ pour $0 \le k \le 4$. Quel est son degré? En déduire Ker Δ , Im Δ et le rang de Δ .
- (c) Soit Q un polynôme dans Im Δ . Montrer qu'il existe un unique polynôme P tel que $\Delta(P) = Q$ et X^2 divise P.

Espaces vectoriels complexes

Exercice 9. Considerons l'espace \mathbb{C}^2 , avec les operations de somme $(z_1, w_1) + (z_2, w_2) := (z_1 + z_2, w_1 + w_2)$ et produit par scalaire $\lambda \cdot (z, w) = (\lambda z, \lambda w)$, pour $\lambda \in \mathbb{C}$.

- (a) Montrer que \mathbb{C}^2 est un espace vectoriel complexe.
- (b) Trouver une base de \mathbb{C}^2 comme espace vectoriel complexe. Quelle est sa dimension complexe dim $\mathbb{C}(\mathbb{C}^2)$?
- (c) Montrer que \mathbb{C}^2 est un espace vectoriel réel.
- (d) Trouver une base de \mathbb{C}^2 comme espace vectoriel réel. Quelle est sa dimension réelle $\dim_{\mathbb{R}}(\mathbb{C}^2)$?

Soit
$$V = \{(z, w) \in \mathbb{C}^2 \mid \text{Re}(z) = 0\}.$$

- (e) Montrer que V est un sous-espace vectoriel réel de \mathbb{C}^2 , mais il n'est pas un sous-espace vectoriel complexe de \mathbb{C}^2 .
- (f) Trouver une base de V comme sous-espace vectoriel réel. Quelle est sa dimension $\dim_{\mathbb{R}}(V)$?

Exercice 10. Parmi les sous-ensembles suivants de \mathbb{C}^n , n=2,3, indiquer ceux qui sont des sous-espaces vectoriels complexes.

$$\text{(a) } \{(\alpha+\beta,\alpha,2\alpha-\mathfrak{i}\beta)\in\mathbb{C}^3\mid \alpha,\beta\in\mathbb{C}\}.$$

$$\text{(b) } \{(\alpha+\mathfrak{i},\alpha,-\alpha)\in\mathbb{C}^3\mid \alpha\in\mathbb{C}\}.)$$

(b)
$$\{(\alpha + \mathfrak{i}, \alpha, -\alpha) \in \mathbb{C}^3 \mid \alpha \in \mathbb{C}\}.$$

(c)
$$\{(\alpha, \mathbf{i}\alpha) \in \mathbb{C}^2 \mid \alpha \in \mathbb{R}\}.$$

(d)
$$\{(\alpha, \mathbf{i}\alpha) \in \mathbb{C}^2 \mid \alpha \in \mathbb{C}\}.$$

$$\begin{aligned} & \text{(c) } \{(\alpha, \mathfrak{i}\alpha) \in \mathbb{C}^2 \mid \alpha \in \mathbb{R}\}. \\ & \text{(e) } \{(x, y, z) \in \mathbb{C}^3 \mid 2\mathfrak{i}x + (\mathfrak{i} - 1)y - z = 0\}. \end{aligned}$$

$$\begin{aligned} & \text{(d) } \{(\alpha, \mathfrak{i}\alpha) \in \mathbb{C}^2 \mid \alpha \in \mathbb{C}\}. \\ & \text{(f) } \{(x, y) \in \mathbb{C}^2 \mid |x| + |y| = 0\}. \end{aligned}$$

(f)
$$\{(x,y) \in \mathbb{C}^2 \mid |x| + |y| = 0\}.$$

Exercice 11. Résoudre les systèmes linéaires suivants (en appliquant l'algorithme de Gauss), par rapport aux indéterminées complexes $x, y, z \in \mathbb{C}$:

(a)
$$\begin{cases} x + iy = 0 \\ 3x + 2y + z = 4 + i, \\ ix - y + (1 + i)z = 2 \end{cases}$$
 (b)
$$\begin{cases} x + iy - 3z = 1 \\ ix - y - iz = -1 \\ -x - iy - (3 + 4i)z = -3 - 2i \end{cases}$$

Exercice 12. Soit
$$A = \begin{pmatrix} \mathbf{i} & 0 & 0 \\ 0 & e^{\frac{\pi \mathbf{i}}{3}} & 0 \\ 0 & 0 & \lambda \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$$
, avec $\lambda \in \mathbb{C}$.

- (a) Pour quels valeurs de λ la matrice A est inversible?
- (b) Calculer A^{-1} pour λ qui satisfait la condition du point précédent.
- (c) Calculer A^k pour tout $k \in \mathbb{N}$.
- (d) Quelle est la plus petite valeur de $k \in \mathbb{N}^*$ telle qu'il existe $\lambda \in \mathbb{C}$ avec $A^k = \operatorname{Id}$? Quelles sont les valeurs de tels λ ?

Exercice 13. Parmi les applications suivantes $f: E \to F$ entre deux espaces vectoriels, déterminer les applications linéaires. Le cas écheant, fixer des bases de E et F, et déterminer la matrice associée par rapport aux bases choisies.

- (a) $f: \mathbb{C} \to \mathbb{R}$, $z \mapsto |z|$ (comme application \mathbb{R} -linéaire),
- (b) $f: \mathbb{C} \to \mathbb{C}$, $z \mapsto \overline{z}$ (comme application \mathbb{C} -linéaire),
- (c) $f: \mathbb{C} \to \mathbb{C}$, $z \mapsto \overline{z}$ (comme application \mathbb{R} -linéaire),
- (d) $f: \mathbb{C}^2 \to \mathbb{C}$, $(z, w) \mapsto e^{\pi i/3}z + iw$ (comme application \mathbb{C} -linéaire),
- (e) $f: \mathbb{C}^2 \to \mathbb{C}$, $(z, w) \mapsto e^{\pi i/3} z + i w$ (comme application \mathbb{R} -linéaire).

Espace de matrices

Exercice 14. Soit $\mathcal{M}_3(\mathbb{R})$ l'espace des matrices carrées 3×3 à coefficients réels.

- (a) Montrer que $\mathcal{M}_3(\mathbb{R})$ est un espace vectoriel. En donner la dimension et une base.
- (b) Montrer que le sous-ensemble de $\mathcal{M}_3(\mathbb{R})$ donnée par

$$V = \left\{ \begin{pmatrix} a+b & a-b+c & a-c \\ a-b-c & a & a+b+c \\ a+c & 0 & a-b \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}) \, \middle| \, a,b,c \in \mathbb{R} \right\}$$

est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. Déterminer une base et la dimension de V.

Exercice 15. Soit $M_n = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées de dimension n. Soient $S_n = \{A \in M_n \mid {}^t A = A\}$ l'espace des matrices symétriques, $A_n = \{A \in M_n \mid {}^t A = -A\}$ l'espace des matrices anti-symétriques.

- (a) Montrer que M_n est un espace vectoriel, et S_n , A_n deux sous-espaces vectoriels de M_n .
- (b) Trouver une base et en déduire la dimension de M_n , S_n et A_n .
- (c) Montrer que $S_n \oplus A_n = M_n$.

Exercice 16. On pose:

$$F = \left\{ \left(\begin{array}{cc} a+b & -b \\ a+2b & a \end{array} \right) \in \mathcal{M}_2(\mathbb{R}) \, \middle| \, a, \ b, \ c \in \mathbb{R} \right\}$$

- (a) Montrer que F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- (b) Donner une base et la dimension de F.

Exercice 17. Soit $B = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$, et considerons l'application $f : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ donnée par f(A) = AB.

- (a) Montrer que f est une application linéaire, et écrire la matrice associée à f par rapport à la base de $\mathcal{M}_2(\mathbb{R})$ donnée par $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
- (b) Montrer que f est inversible, et donner l'application réciproque.

Espace de suites

Exercice 18. Soit $E = \mathbb{R}^{\mathbb{N}} = \{(u_n)_{n \in \mathbb{N}} \mid u_n \in \mathbb{R}\}$ l'espace des suites numériques réelles.

- (a) Montrer que E est un espace vectoriel réel.
- (b) Exibir une famille libre de cardinal denombrable. En déduir que E n'est pas un espace vectoriel de type fini.

Soit $V = \{(u_n)_n \in E \mid u_{n+2} = 2u_{n+1} - u_n \ \forall n \in \mathbb{N}\}.$

- (c) Montrer que V est un sous-espace de E.
- (d) Trouver une base de V. En déduire la dimension de V.

Suggestion : remarquer que une suite $(u_n)_n \in V$ est déterminée par les valeurs de u_0 et u_1 .

Exercice 19. Soit E l'espace vectoriel des suites numériques réelles. Soit q un nombre réel. Montrer que l'application qui, a toute suite numérique u_n , associe la suite v_n donnée par

$$\forall n \in \mathbb{N}, \quad v_n = u_{n+1} - qu_n$$

est un endomorphisme de E.

Espace de fonctions

Exercice 20. Les sous-ensembles suivants de $\mathbb{R}^{\mathbb{R}}$ sont-il des sous-espaces vectoriels?

(a)
$$E_1 = \{ f \mid f(0) = 1 \},$$

(b)
$$E_2 = \{ f \mid f(1) = 0 \},\$$

(c)
$$E_3 = \{ f \mid f(1) = 2f(0) \},$$

(d)
$$E_4 = \{ f \mid f(1) = f(0) + 2 \},\$$

(e)
$$E_5 = \{ f \mid (\forall x \in \mathbb{R}) f(x) \le 0 \},$$

(f)
$$E_6 = \{ f \mid f' + f = 0 \},$$

(g)
$$E_7 = \{ f \mid f' + f = 1 \},$$

(h)
$$E_8 = \{ f \mid (\forall x \in \mathbb{R}) f(x) = f(-x) \},$$

(i)
$$E_9 = \{ f \mid f \text{ est continue sur } \mathbb{R} \},$$

(j)
$$E_{10} = \{ f \mid f \text{ est dérivable deux fois sur } \mathbb{R} \}.$$

Exercice 21. On considère \mathcal{F} le \mathbb{R} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} dont le domaine est \mathbb{R} . Étudier la liberté des familles (ou systèmes) suivants :

(a)
$$S_1 = \{1, x, \sin x\},\$$

(b)
$$S_2 = \{1, \sin^2 x, \cos^2 x\},\$$

(c)
$$S_3 = \{e^x, \sin x, x\},\$$

(d)
$$S_4 = \{1, x-1, (x-1)(x-2)\}.$$

Exercice 22. Soit E l'espace vectoriel des fonctions $\{f: \mathbb{R} \to \mathbb{R}\}$, et les sous espaces

$$P = \{f \mid f(t) = f(-t), \ \forall t \in \mathbb{R}\} \quad \text{ et } \quad I = \{f \mid f(t) = -f(-t), \ \forall t \in \mathbb{R}\}$$

des fonctions paires et impaires respectivement. Vérifier que $E = P \oplus I$.

Exercice 23. Soit E l'espace vectoriel réel des fonctions réelles définies et dérivables deux fois sur \mathbb{R} .

- (a) Montrer que les applications $f \mapsto f(0)$, $f \mapsto f'(1)$ et $f \mapsto \int_0^1 f(t) dt$ sont des applications linéaires de E dans \mathbb{R} .
- (b) Montrer que les applications $f \mapsto f(0) + 1$ et $f \mapsto (f'(2))^2$ ne sont pas des applications linéaires de E dans \mathbb{R} .

Exercice 24. On considère l'espace vectoriel réel $E = \mathcal{C}^{\infty}(\mathbb{R}; \mathbb{R})$ des fonctions indéfiniment dérivables sur \mathbb{R}

- (a) Montrer que les vecteurs $u_1 := x \mapsto \cos(x) \operatorname{ch}(x)$, $u_2 := x \mapsto \sin(x) \operatorname{ch}(x)$, $u_3 := x \mapsto \cos(x) \operatorname{sh}(x)$ et $u_4 := x \mapsto \sin(x) \operatorname{sh}(x)$ forment un système libre dans E.
- (b) Soit F le sous-espace vectoriel de E engendré par les quatre vecteurs u_i . Déterminer la matrice M de l'application $f \mapsto f'$ dans cette base.
- (c) Calculer M^n pour $n \ge 1$.

Espace des applications linéaires

Exercice 25. Soient E, F deux espaces vectoriels, et soit $\mathcal{L}(E, F)$ l'espace des applications linéaires de E à F.

- (a) Montrer que $\mathcal{L}(E, F)$ est un espace vectoriel.
- (b) Soient $E = \mathbb{R}^n$ et $E^* := \mathcal{L}(E, \mathbb{R})$ (dit *espace dual* de E). Montrer que les applications $f_1, \ldots, f_n \in E^*$ définies par $f_k(x_1, \ldots, x_n) = x_k$, pour $k = 1, \ldots, n$, forment une base de E^* .
- (c) Donner un isomorphisme entre $E = \mathbb{R}^3$ et E^* .
- (d) Soient E, F deux espaces vectoriels de dimension finie. Montrer que $\mathcal{L}(E, F)$ est de dimension finie, donnée par dim $\mathcal{L}(E, F) = \dim E \cdot \dim F$.

Exercice 26. Soit E un espace vectoriel, et E^* son espace dual. Soit $V \subset E$ un sous-espace vectoriel de E. Soit

$$Ann(V) := \{ \phi \in E^* \mid \phi(v) = 0 \ \forall \ v \in V \},\$$

dit annulateur de V.

(a) Montrer que Ann(V) est un sous-espace vectoriel de E^* .

Soit maintenant $E = \mathbb{R}^3$, et $V = \text{Vect}(v_1, v_2)$, avec $v_1 = (2, 1, 0)$ et $v_2 = (0, 0, 1)$.

- (a) Trouver une équation caractérisant Ann(V).
- (b) Trouver une base de Ann(V). Quelle est sa dimension?

Exercice 27. Soit E un espace vectoriel et E^* son espace dual. Montrer que pour tout V, W sous-espaces vectoriels de E, on a

- (a) $\operatorname{Ann}(V \cap W) = \operatorname{Ann}(V) + \operatorname{Ann}(W)$,
- (b) $\operatorname{Ann}(V+W) = \operatorname{Ann}(V) \cap \operatorname{Ann}(W)$.

Orthogonals

Exercice 28. Pour $v=(x_1,\ldots,x_n)$ et $w=(y_1,\ldots,y_n)\in\mathbb{R}^n$ deux vecteurs dans \mathbb{R}^n , on dénote par $\langle v,w\rangle:={}^twv=\sum_{i=1}^nx_iy_i$ le produit scalaire standard entre v et w. Soit V un sous-espace vectoriel de \mathbb{R}^n , et notons par

$$V^{\perp} = \{ w \in \mathbb{R}^n \mid \langle v, w \rangle = 0 \ \forall \, v \in V \}$$

le sous-espace des vecteurs orthogonals à l'espace V.

- (a) Montrer que V^{\perp} est un sous-espace vectoriel de \mathbb{R}^n , dit *orthogonal* de V (par rapport au produit scalaire standard).
- (b) Soit $C = \{v_1, \dots, v_k\}$ une famille génératrice de V. Montrer que $V^{\perp} = \{w \in \mathbb{R}^n \mid \langle v_i, w \rangle = 0 \ \forall i = 1, \dots, k\}$.
- (c) Montrer que $V \oplus V^{\perp} = \mathbb{R}^n$.

Exercice 29. Soient $v_1 = (2, 1, 0, 1), v_2 = (3, -1, -1, 0), v_3 = (1, -2, -1, -1), \text{ et } V = \text{Vect}(\{v_1, v_2, v_3\}).$

- (a) Trouver des équations caractérisants V^{\perp} .
- (b) Trouver une base de V^{\perp} .
- (c) Trouver des équations caractérisants V.
- (d) Montrer que $V \oplus V^{\perp} = \mathbb{R}^4$.

Exercice 30. Soit $E = \mathbb{R}^n$ et E^* son espace dual. Considerons l'application $\Phi: E \to E^*$ qui associe à v l'application $\Phi(v)$ donnée par

$$\Phi(v): w \mapsto \langle v, w \rangle.$$

- (a) Montrer que Φ est un isomorphisme entre E et E^* .
- (b) Soit $V \subseteq E$ un sous-espace vectoriel de E. Montrer que Φ induit un isomorphisme entre V^{\perp} et Ann(V).
- (c) Déduire que dim $V^{\perp} = \dim \text{Ann}(V) = n \dim V$.

Mixte

Exercice 31. Soit $\mathbb{R}_2[T]$ l'espace vectoriel des polynômes de degré ≤ 2 à coefficients réels, et $\mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées de dimension 2.

(a) Montrer qu'il n'existe pas d'application linéaire linéaire surjective entre $\mathbb{R}_2[T]$ et $\mathcal{M}_2(\mathbb{R})$.

Soit $f: \mathbb{R}_2[T] \to \mathcal{M}_2(\mathbb{R})$ donnée par

$$f(P) = \begin{pmatrix} P(0) & P(1) \\ P(1) & P(2) - P''(0) \end{pmatrix}.$$

- (b) Montrer que f est une application linéaire, et écrire la matrice associée par rapport aux bases $(1, T, T^2)$ et (E_1, E_2, E_3, E_4) de l'exercice 17.
- (c) Calculer la dimension de $\operatorname{Ker} f$ et en donner une base.
- (d) Trouver une base \mathcal{B} de Im f.
- (e) Montrer que $\operatorname{Im} f \subset S_n$ l'espace des matrices symétriques.
- (f) Compléter (si nécessaire) \mathcal{B} à une base de S_n .

Exercice 32. Soit $\mathbb{R}_2[T]$ l'espace vectoriel des polynômes de degré ≤ 2 à coefficients réels, et $\mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices Soit $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}_2[T]$ l'application donnée par

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + \frac{b+c}{2}T + dT^2.$$

- (a) Montrer que f est une application linéaire, et écrire la matrice associée par rapport aux bases (E_1, E_2, E_3, E_4) de l'exercice 17 et $(1, T, T^2)$.
- (b) Calculer Ker f.
- (c) Montrer que pour tout $P(T) \in \mathbb{R}_2[T]$ il existe une unique matrice symétrique A telle que f(A) = P.